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Abstract—Fourth-order finite strain expressions for the effective elastic moduli of a solid under
hydrostatic stress are derived from a general expression for effective elastic moduli. Expressions in
terms of the strain tensors E and » are given. The expressions are then written in terms of the moduli
and their pressure derivatives evaluated at an arbitrary reference state. The temperature dependence
of these expressions is derived from the fourth-order quasi-harmonic expression for the lattice
vibrational energy. Some general thermodynamic relations are derived between the parameters which
specify the thermal effects and the pressure and temperature derivatives of the elastic moduli at the
reference state. General relations between isothermal and isentropic elastic moduli and their pressure
and temperature derivatives are also given. Much of the development is valid for materials of arbitrary

symmetry, but the complete development is given only for materials of cubic symmetry.

1. INTRODUCTION

In a previous paper[1], henceforth referred to as
Paper I, finite strain equations were derived giving
pressure in solids as a function of volume and
temperature, the thermal contribution being evalua-
ted in the quasi-harmonic approximation, which re-
sults from the fourth-order anharmonic theory of
lattice dynamics[2]. Paper I was a reconsideration
of the theory given by Thomsen[3]. As Thomsen [4]
generalized his theory, so this paper generalizes Pa-
per I to give the effective elastic moduli of a solid as
functions of volume and temperature.

A number of points which were made in Paper I
carry directly over to the present treatment, and so
these points will not be discussed in detail here. In
particular, it may be noted that general finite strain
relations may be written in an implicitly frame-
indifferent form in terms of a whole class of
frame-indifferent strain tensors, and not just in
terms of the “Lagrangian” strain tensor, n (defined
later)[5]. Also, that the finite strain expansion of
quasi-harmonic thermal contributions may be ter-
minated two orders earlier than the expansion of
the static lattice contributions, and that the refe-
rence state will again be left arbitrary. The equa-
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tions will again be developed in terms of the partic-
ular strain tensors m and E. It should again be
emphasized that the frame-indifferent analogue, E,
of the “Eulerian” strain tensor, €, should be used
rather than e, in general. Equations in terms of the
displacement gradient, e (defined later), will not be
developed here. They were useful to the discussion
in Paper I, but are not essential to the development.

The equations developed in Paper I can be
generalized in two ways—by including the effects
of non-hydrostatic stress, and by considering aniso-
tropic materials. A number of authors have discus-
sed the various ways in which second- and higher-
order elastic constants (which arise when arbitrary
large stresses are considered) may be defined, and
their relationship with the “effective’ elastic mo-
duli (which arise when infinitesimal stresses are
added to prevailing large stresses) [e.g. 3, 6-13]. In
general, materials cannot sustain very large non-
hydrostatic stresses, and, especially in geophysics,
the case of most interest is that of an infinitesimal
non-hydrostatic stress superimposed on an arbitra-
rily large hydrostatic stress. Accordingly, equations
will be developed directly for this special case, wit-
hout reference to the more general treatments. Alt-
hough much of this paper is valid for materials of
arbitrary symmetry, parts of the treatment are gre-
atly simplified by considering only isotropic materi-
als or materials of cubic symmetry, for which the
response to a hydrostatic stress is an isotropic
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strain, which can be specified with a single scalar
strain parameter.

The treatment separates into three parts. First,
the appropriate finite strain expressions for the
effective elastic moduli are derived and written in
terms of the moduli and their pressure derivatives
at zero pressure. Second, the temperature depen-
dence of these moduli is derived from lattice dyna-
mics. Third, some general thermodynamic relations
are derived between the equation of state parame-
ters and the elastic moduli and their pressure and
temperature derivatives, and between isothermal
and isentropic elastic moduli and their pressure and
temperature derivatives.

2. EFFECTIVE ELASTIC MODULI UNDER
HYDROSTATIC STRESS

In this section, exact general expressions for
effective elastic moduli under arbitrary prestress
[e.g. 7, 10] are specialized to the case of hydrostatic
prestress and, further, to the case of a material of
cubic symmetry. The general expressions can be
derived by considering either the response of a
prestressed material to a further infinitesimal
stress, or the equations governing small amplitude
waves. The expressions, after specialization, will
also be written explicitly in terms of the particular
finite strain measures to be used here, and the
parameters in these expressions will be related to
the pressure derivatives of the effective moduli.

The treatment requires measures of the finite
strain induced by the large prestress and of the
additional superposed infinitesimal strain. Consider
a point in the material which, in the “natural”, i.e.
unstressed, state has position vector (referred to
Cartesian axes) a = (ai, a., a;). Denote its position
vector after the material is subjected to the pre-
stress as X, and its position vector after the additio-
nal infinitesimal stress as x. Then the displacement
gradients e, f and u may be defined by

Xi— a = ea; = fix, )
Xi — Xi = uiX;, ()

where u; is infinitesimal, all quantities are referred
to the same Cartesian axes, and the summation con-
vention for repeated indices is assumed.

The Cauchy stress tensor, T, is related, in
general, to the Helmholtz free energy, A, and the
density, p, of a material by [14, Section 82]

A
1 p(a—ui‘) 2 3)
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and the effective elastic moduli are[7]
T,
Ay
A
pauiiauk,

Ciu= (4a)

— T;ibu. (4b)
In deriving (4b), the following relation [4] was used:

p _
T = p8kl' (5)

The moduli defined by (4a) are isothermal or
isentropic according to whether the derivative is
taken isothermally or isentropically.

Thurston[7] showed that in the special case of
hydrostatic prestress the effective moduli are iden-
tically given by either C or c¢:

_ 0Ty _
Ci = Fr ikl (6)

where s is the symmetric component of u:
1 - 1
Sij = i(uii +Ui), @z = z(uii — Uii), (7)
and o is the antisymmetric component. Rewriting u
as
Uij = Sjj & W

1
=5 5 (S,',‘ + 85 + 0 — w;i), ®)

and differentiating, one obtains that

B i (A
6sk, a 2 (aukl " aulk )' (9)
Thus, in the special case of hydrostatic prestress,
T; = — P§;, the effective elastic moduli can be
written
__1/(0T; 3_TJ)
Cijk = 2 (auk' + au’k (]03)
1 ( 3°A 3’A )
== + ijOkle
2 p(au.-,-auk, AU QU Pa]sm (IOb)

Note that the form (10b) is symmetric under the
interchange of subscript pairs (ij)-(kl), as well as
under the interchange of k and L This guarantees
symmetry under the interchange of i and j. Thus
the form (10) has the full Voigt symmetry of moduli
associated with infinitesimal deformations.

The expressions (3) and (10) are referred, through
u, to the prestressed state described through the
coordinates X. They can be referred to the natural
state, described by a, through e or £, defined by (1).
The tensors e and f are not themselves frame-
indifferent[5, 14], and so will not lead to constitu-




